Extraction of high-quality genomic DNA from latex-containing plants.

نویسندگان

  • An Michiels
  • Wim Van den Ende
  • Mark Tucker
  • Liesbet Van Riet
  • André Van Laere
چکیده

The isolation of intact, high-molecular-mass genomic DNA is essential for many molecular biology applications including long PCR, endonuclease restriction digestion, Southern blot analysis, and genomic library construction. Many protocols are available for the extraction of DNA from plant material. However, for latex-containing Asteraceae (Cichorioideae) species, standard protocols and commercially available kits do not produce efficient yields of high-quality amplifiable DNA. A cetyltrimethylammonium bromide protocol has been optimized for isolation of genomic DNA from latex-containing plants. Key steps in the modified protocol are the use of etiolated leaf tissue for extraction and an overnight 25 degrees C isopropanol precipitation step. The purified DNA has excellent spectral qualities, is efficiently digested by restriction endonucleases, and is suitable for long-fragment PCR amplification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient and simple CTAB based method for total genomic DNA isolation from low amounts of aquatic plants leaves with a high level of secondary metabolites

An efficient DNA isolation protocol specifically modified to get pure quality DNA required for molecular studieshas been reported in this paper. Some aquatic plants (Potamogeton spp., Ceratophyllum demersum and Myriophyllum spicatum) were used for the study. The protocol developed will be useful in getting high and pure DNA. Instead of using the available DNA extraction kits, this protocol can ...

متن کامل

Optimization of the genomic DNA extraction in some mosses

The presence of organic compounds and high amount of secondary metabolites (polysaccharides, phenolic component, etc.) in mosses cause difficulties in DNA extraction that are followed by problems in PCR reactions. In lower plants, various methods have been used for DNA extraction including silica gel and different commercial kits. These methods mostly use hazardous (like phenol or liquid nitrog...

متن کامل

Comparison study of three methods for genomic DNA extraction from fresh and herbarium leaf specimens of Achillea wilhelmsii C.Koch

DNA extraction from plant tissues often causes most problems. For example, unsuccessful removal secondary metabolites during extraction, such as phenolic compounds in aromatic and medicinal plants, cause to some mistakes in result of molecular experiments by using of the extracted DNA. Achillea wilhelmsii is a medicinal plant belong to Asteraceae family and native to Iran, there is little infor...

متن کامل

Phenol-stacked carbon nanotubes: A new approach to genomic DNA isolation from plants

Extraction of intact quality DNA from plant tissues, especially those rich in secondary metabolites, is often challenging. Literally, hundreds of different DNA isolation protocols from various plant species have been published over the last decades. Although many commercial DNA isolation kits are convenient and designed to be safe, their cost and availability cause limitations in small molecula...

متن کامل

DNA Extraction of Almond without Phenol and Liquid Nitrogen

Genomic DNA extraction with a high quantity and quality is a basic requirement in molecular biology. The DNA obtained was free of any contamination proteins, polysaccharide, polyphenols and colored pigments. These compounds would interfere with the genomic isolation procedures and downstream reactions such as restriction enzyme analysis and gene amplification. The isolated genomic DNA was fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical biochemistry

دوره 315 1  شماره 

صفحات  -

تاریخ انتشار 2003